

Comparison of relative changes in greenhouse gas emissions with the addition of Agnyte

Canola Demonstration – Sth NSW, Australia

## Objective of trial:

To evaluate the effects of Agnyte on the growth, yield and quality of Canola, comparing a standard fertiliser program with and without applying Agnyte and a standard fertiliser program with a 37% reduction in applied Nitrogen with applied Agnyte.

#### Location:

Rand, Sth NSW, Australia

#### Treatments:

- 1. 100% applied N
- 2. 100% applied N + Agnyte
- 3. 63%applied N + Agnyte

### Relevant agronomy:

The canola crop was planted using No-till practices following a wheat crop (stubble retained).

### **Relevant Soil Analysis Results**

| Organic matter (W&B) (%):           | 1.4  |
|-------------------------------------|------|
| pH (CaCl <sub>2</sub> ):            | 4.8  |
| Electrical Conductivity (1:5 water) | 0.08 |
| Content P - Colwell (mg/kg)         | 38   |
| Avail K (mg/kg)                     | 270  |
| Content S (KCl40) (mg/kg)           | 9    |
| Calcium (Amm-acet cmol+/kg)         | 5.7  |
| Magnesium (Amm-acet cmol+/kg)       | 2.5  |
| Potassium (Amm-acet cmol+/kg)       | 0.69 |
| Sodium % of Cations (ESP)           | 2.9  |
| CEC (cmol+/kg)                      | 9.3  |

# **Applied Fertiliser**

| Pre-Sowing                     | 2.5t/ha of lime broadcast<br>1t/ha Gypsum (0-0-0-18.5) |
|--------------------------------|--------------------------------------------------------|
| Sowing                         | 80kg/ha MAP (10-21.9-0-1.5)<br>50kg/ha Urea (46-0-0-0) |
| Top Dress 1 (all treatments)   | 100kg/ha Urea (46-0-0-0)                               |
| Top Dress 2 (100%N treatments) | 100kg/ha Urea (46-0-0-0)                               |

# This equates to:

|            | 100% N treatments | 63% N Treatments |
|------------|-------------------|------------------|
| Nitrogen   | 123kg/ha          | 77kg/ha          |
| Phosphorus | 17.5kg/ha         | 17.5kg/ha        |
| Potassium  | 0kg/ha            | 0kg/ha           |
| Sulphur    | 185kg/ha          | 185kg/ha         |

| <b>Crop protection</b> 3 herbicide applications | Yield Results           |           |  |  |  |
|-------------------------------------------------|-------------------------|-----------|--|--|--|
| No irrigation was used.                         | 100% Applied N          | 4.20t/ha  |  |  |  |
| Sowing date<br>20 April 2022                    | 100% Applied N + Agnyte | 4.32 t/ha |  |  |  |
| Harvest date 4 December 2022                    | 63% Applied N + Agnyte  | 4.21t/ha  |  |  |  |



## Greenhouse gas estimation:

The Cool Farm Tool (<a href="https://coolfarmtool.org/">https://coolfarmtool.org/</a>) was used to estimate GHG emissions (web portal), using the parameters listed above.

## Assumptions used in the calculation:

- 1. No land use, management or cover crop change in the last 20 years
- 2. All residue management is standard (based on crop yield)
- 3. Residue distributed, incorporated or mulched
- 4. Land size is 1ha
- 5. Soil type: fine (clay)
- 6. Soil moisture average: dry
- 7. Fertiliser manufactured in SE Asia (2014 benchmark)
- 8. As all treatments received the same pesticides these were not included
- 9. No transport included

### Diesel usage assumptions

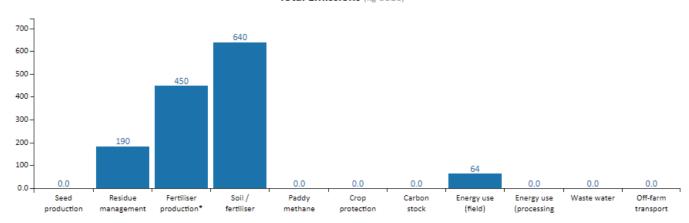
- Sowing 5lt/ha
- Spraying -1lt/ha
- Fertiliser spreading 1lt/ha
- Windrowing 4lt/ha
- Harvesting combine 8lt/ha



# **100% N ONLY**

**TOTAL EMISSIONS 1.34**k kg C02e

**EMISSIONS PER HECTARE** 


**1.34**k kg C02e

**EMISSIONS PER TONNE** 

318.99

kg/ha

#### Total Emissions (kg CO2e)

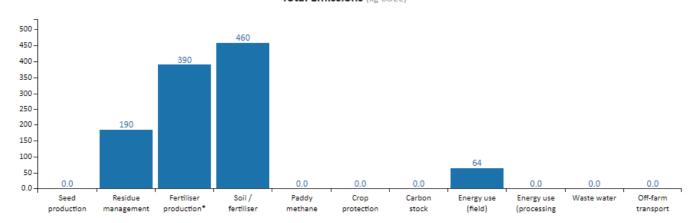


| Sources                 | CO <sub>2</sub> | N <sub>2</sub> O | CH <sub>4</sub> | Total CO <sub>2</sub> eg | Per ha | Per tonne |
|-------------------------|-----------------|------------------|-----------------|--------------------------|--------|-----------|
| Seed production         | 0               | 0                | 0               | 0                        | 0      | 0         |
| Residue management      | 0               | 0.68             | 0               | 185.02                   | 185.02 | 44.05     |
| Fertiliser production*  | 450.07          | 0                | 0               | 450.07                   | 450.07 | 107.16    |
| Soil / fertiliser       | 183.94          | 1.67             | 0               | 640.34                   | 640.34 | 152.46    |
| Paddy methane           | 0               | 0                | 0               | 0                        | 0      | 0         |
| Crop protection         | 0               | 0                | 0               | 0                        | 0      | 0         |
| Carbon stock changes    | 0               | 0                | 0               | 0                        | 0      | 0         |
| Energy use (field)      | 64.32           | 0                | 0               | 64.32                    | 64.32  | 15.31     |
| Energy use (processing) | 0               | 0                | 0               | 0                        | 0      | 0         |
| Naste water             | 0               | 0                | 0               | 0                        | 0      | 0         |
| Off-farm transport      | 0               | 0                | 0               | 0                        | 0      | 0         |



## **63% N + AGNYTE**

TOTAL EMISSIONS
1.10k


kg C02e

EMISSIONS PER HECTARE

1.10 k...
kg C02e

EMISSIONS PER TONNE
261.25
kg/ha

#### Total Emissions (kg CO2e)



| Sources                 | co <sub>2</sub> | N <sub>2</sub> O | CH <sub>4</sub> | Total CO <sub>2</sub> eg | Per ha | Per tonne |  |
|-------------------------|-----------------|------------------|-----------------|--------------------------|--------|-----------|--|
| Seed production         | 0               | 0                | 0               | 0                        | 0      | 0         |  |
| Residue management      | 0               | 0.68             | 0               | 185.27                   | 185.27 | 44.01     |  |
| Fertiliser production*  | 390.71          | 0                | 0               | 390.71                   | 390.71 | 92.81     |  |
| Soil / fertiliser       | 110.61          | 1.28             | 0               | 459.58                   | 459.58 | 109.16    |  |
| Paddy methane           | 0               | 0                | 0               | 0                        | 0      | 0         |  |
| Crop protection         | 0               | 0                | 0               | 0                        | 0      | 0         |  |
| Carbon stock changes    | 0               | 0                | 0               | 0                        | 0      | 0         |  |
| Energy use (field)      | 64.32           | 0                | 0               | 64.32                    | 64.32  | 15.28     |  |
| Energy use (processing) | 0               | 0                | 0               | 0                        | 0      | 0         |  |
| Waste water             | 0               | 0                | 0               | 0                        | 0      | 0         |  |
| Off-farm transport      | 0               | 0                | 0               | 0                        | 0      | 0         |  |



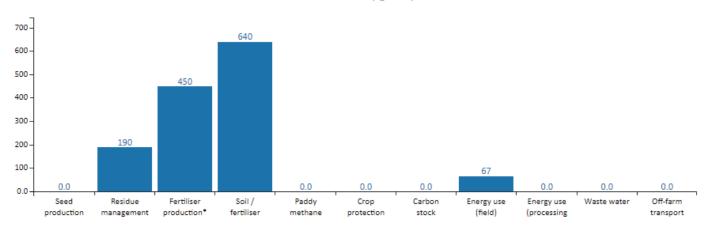
# **100% N + AGNYTE**

**TOTAL EMISSIONS** 

**1.35**k kg C02e

**EMISSIONS PER HECTARE** 

1.35k


kg C02e

**EMISSIONS PER TONNE** 

311.60

kg/ha

#### Total Emissions (kg CO2e)



| Sources                 | CO <sub>2</sub> | N <sub>2</sub> O | CH <sub>4</sub> | Total CO <sub>2</sub> eg | Per ha | Per tonne |
|-------------------------|-----------------|------------------|-----------------|--------------------------|--------|-----------|
| Seed production         | 0               | 0                | 0               | 0                        | 0      | 0         |
| Residue management      | 0               | 0.69             | 0               | 188.72                   | 188.72 | 43.69     |
| Fertiliser production*  | 450.07          | 0                | 0               | 450.07                   | 450.07 | 104.18    |
| Soil / fertiliser       | 183.94          | 1.67             | 0               | 640.34                   | 640.34 | 148.23    |
| Paddy methane           | 0               | 0                | 0               | 0                        | 0      | 0         |
| Crop protection         | 0               | 0                | 0               | 0                        | 0      | 0         |
| Carbon stock changes    | 0               | 0                | 0               | 0                        | 0      | 0         |
| Energy use (field)      | 67              | 0                | 0               | 67                       | 67     | 15.51     |
| Energy use (processing) | 0               | 0                | 0               | 0                        | 0      | 0         |
| Waste water             | 0               | 0                | 0               | 0                        | 0      | 0         |
| Off-farm transport      | 0               | 0                | 0               | 0                        | 0      | 0         |









#### **Conclusions:**

Replacing 37% of nitrogen with Agnyte resulted in no yield difference, but reduced emissions by 58kg CO2e/tonne of canola produced or 240 CO2e kg/ha.

Adding Agnyte to the 100% N treatment increased yield by 0.12t/ha, but reduced emissions by 7kgCO2e/tonne of canola produced with little or no impact on the emissions per hectare.

